Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(6): 106895, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37275531

RESUMO

Skeletal muscle is the major site of glucose utilization in mammals integrating serum glucose clearance with mitochondrial respiration. To mechanistically elucidate the roles of iPLA2γ in skeletal muscle mitochondria, we generated a skeletal muscle-specific calcium-independent phospholipase A2γ knockout (SKMiPLA2γKO) mouse. Genetic ablation of skeletal muscle iPLA2γ resulted in pronounced muscle weakness, muscle atrophy, and increased blood lactate resulting from defects in mitochondrial function impairing metabolic processing of pyruvate and resultant bioenergetic inefficiency. Mitochondria from SKMiPLA2γKO mice were dysmorphic displaying marked changes in size, shape, and interfibrillar juxtaposition. Mitochondrial respirometry demonstrated a marked impairment in respiratory efficiency with decreases in the mass and function of oxidative phosphorylation complexes and cytochrome c. Further, a pronounced decrease in mitochondrial membrane potential and remodeling of cardiolipin molecular species were prominent. Collectively, these alterations prevented body weight gain during high-fat feeding through enhanced glucose disposal without efficient capture of chemical energy thereby altering whole-body bioenergetics.

2.
J Lipid Res ; 62: 100052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33636162

RESUMO

High-fat (HF) diet-induced obesity precipitates multiple metabolic disorders including insulin resistance, glucose intolerance, oxidative stress, and inflammation, resulting in the initiation of cell death programs. Previously, we demonstrated murine germline knockout of calcium-independent phospholipase A2γ (iPLA2γ) prevented HF diet-induced weight gain, attenuated insulin resistance, and decreased mitochondrial permeability transition pore (mPTP) opening leading to alterations in bioenergetics. To gain insight into the specific roles of hepatic iPLA2γ in mitochondrial function and cell death under metabolic stress, we generated a hepatocyte-specific iPLA2γ-knockout (HEPiPLA2γKO). Using this model, we compared the effects of an HF diet on wild-type versus HEPiPLA2γKO mice in eicosanoid production and mitochondrial bioenergetics. HEPiPLA2γKO mice exhibited higher glucose clearance rates than WT controls. Importantly, HF-diet induced the accumulation of 12-hydroxyeicosatetraenoic acid (12-HETE) in WT liver which was decreased in HEPiPLA2γKO. Furthermore, HF-feeding markedly increased Ca2+ sensitivity and resistance to ADP-mediated inhibition of mPTP opening in WT mice. In contrast, ablation of iPLA2γ prevented the HF-induced hypersensitivity of mPTP opening to calcium and maintained ADP-mediated resistance to mPTP opening. Respirometry revealed that ADP-stimulated mitochondrial respiration was significantly reduced by exogenous 12-HETE. Finally, HEPiPLA2γKO hepatocytes were resistant to calcium ionophore-induced lipoxygenase-mediated lactate dehydrogenase release. Collectively, these results demonstrate that an HF diet increases iPLA2γ-mediated hepatic 12-HETE production leading to mitochondrial dysfunction and hepatic cell death.


Assuntos
Dieta Hiperlipídica
3.
J Biol Chem ; 295(34): 12167-12180, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32641497

RESUMO

Recently, eicosanoid-lysophospholipids were identified as novel metabolites generated from the direct cyclooxygenase- or lipoxygenase-catalyzed oxidation of 2-arachidonoyl-lysophospholipids produced from either phospholipase A1-mediated hydrolysis of diacyl arachidonoyl-phospholipids or through the cytochrome c-catalyzed oxidative hydrolysis of the vinyl ether linkage of arachidonoyl-plasmalogens. Although the metabolic pathways generating eicosanoid-lysophospholipids have been increasingly appreciated, the signaling functions of eicosanoid-lysophospholipids remain largely unknown. Herein, we demonstrate that 2-12(S)-HETE-lysophospholipids as well as nonesterified 12(S)-HETE are potent lipid mediators that activate THP-1 human monocytic cells to generate tumor necrosis factor α (TNFα) and interleukin 8 (IL8). Remarkably, low nanomolar concentrations of 12(S)-HETE-lysophospholipids, but not other oxidized signaling lipids examined activated THP-1 cells resulting in the production of large amounts of TNFα. Moreover, TNFα release induced by 12(S)-HETE-lysophospholipids was inhibited by the TNFα converting enzyme inhibitor TAPI-0 indicating normal processing of TNFα in THP-1 cells stimulated with these agonists. Western blotting analyses revealed that 12(S)-HETE-lysophospholipids activated the phosphorylation of NFκB p65, suggesting activation of the canonical NFκB signaling pathway. Importantly, activation of THP-1 cells to release TNFα was stereoselective with 12(S)-HETE favored over 12(R)-HETE. Furthermore, the EC50 of 2-12(S)-HETE-lysophosphatidylcholine in activating THP-1 cells was 2.1 nm, whereas the EC50 of free 12(S)-HETE was 23 nm Additionally, lipid extracts of activated platelets were separated by RP-HPLC demonstrating the coelution of 12(S)-HETE with fractions initiating TNFα release. Collectively, these results demonstrate the potent signaling properties of 2-12(S)-HETE-lysophospholipids and 12(S)-HETE by their ability to release TNFα and activate NFκB signaling thereby revealing a previously unknown role of 2-12(S)-HETE-lysophospholipids in mediating inflammatory responses.


Assuntos
Lisofosfatidilcolinas/metabolismo , Monócitos/metabolismo , Transdução de Sinais , Animais , Ciclo-Oxigenase 1/metabolismo , Humanos , Camundongos , Monócitos/citologia , Células THP-1 , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
J Biol Chem ; 295(16): 5307-5320, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32161117

RESUMO

The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Plaquetas/metabolismo , Fosfolipases A2 do Grupo VI/metabolismo , Lisofosfatidilcolinas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Ácidos Graxos Insaturados/metabolismo , Fosfolipases A2 do Grupo VI/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Spodoptera
5.
J Biol Chem ; 294(26): 10146-10159, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31080170

RESUMO

Recently, oxidized phospholipid species have emerged as important signaling lipids in activated immune cells and platelets. The canonical pathway for the synthesis of oxidized phospholipids is through the release of arachidonic acid by cytosolic phospholipase A2α (cPLA2α) followed by its enzymatic oxidation, activation of the carboxylate anion by acyl-CoA synthetase(s), and re-esterification to the sn-2 position by sn-2 acyltransferase activity (i.e. the Lands cycle). However, recent studies have demonstrated the unanticipated significance of sn-1 hydrolysis of arachidonoyl-containing choline and ethanolamine glycerophospholipids by other phospholipases to generate the corresponding 2-arachidonoyl-lysolipids. Herein, we identified a pathway for oxidized phospholipid synthesis comprising sequential sn-1 hydrolysis by a phospholipase A1 (e.g. by patatin-like phospholipase domain-containing 8 (PNPLA8)), direct enzymatic oxidation of the resultant 2-arachidonoyl-lysophospholipids, and the esterification of oxidized 2-arachidonoyl-lysophospholipids by acyl-CoA-dependent sn-1 acyltransferase(s). To circumvent ambiguities associated with acyl migration or hydrolysis, we developed a synthesis for optically active (d- and l-enantiomers) nonhydrolyzable analogs of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC). sn-1 acyltransferase activity in murine liver microsomes stereospecifically and preferentially utilized the naturally occurring l-enantiomer of the ether analog of lysophosphatidylcholine. Next, we demonstrated the high selectivity of the sn-1 acyltransferase activity for saturated acyl-CoA species. Importantly, we established that 2-15-hydroxyeicosatetraenoic acid (HETE) ether-LPC sn-1 esterification is markedly activated by thrombin treatment of murine platelets to generate oxidized PC. Collectively, these findings demonstrate the enantiomeric specificity and saturated acyl-CoA selectivity of microsomal sn-1 acyltransferase(s) and reveal its participation in a previously uncharacterized pathway for the synthesis of oxidized phospholipids with cell-signaling properties.


Assuntos
Aciltransferases/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Lisofosfolipídeos/metabolismo , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Acilação , Aciltransferases/genética , Animais , Plaquetas/metabolismo , Ácidos Hidroxieicosatetraenoicos/química , Lisofosfolipídeos/química , Camundongos , Microssomos Hepáticos/metabolismo , Oxirredução , Fosfolipídeos/química , Especificidade por Substrato
6.
J Biol Chem ; 292(25): 10672-10684, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28442572

RESUMO

Cardiolipin (CL) is a dimeric phospholipid with critical roles in mitochondrial bioenergetics and signaling. Recently, inhibition of the release of oxidized fatty acyl chains from CL by the calcium-independent phospholipase A2γ (iPLA2γ)-selective inhibitor (R)-BEL suggested that iPLA2γ is responsible for the hydrolysis of oxidized CL and subsequent signaling mediated by the released oxidized fatty acids. However, chemical inhibition by BEL is subject to off-target pharmacologic effects. Accordingly, to unambiguously determine the role of iPLA2γ in the hydrolysis of oxidized CL, we compared alterations in oxidized CLs and the release of oxidized aliphatic chains from CL in experiments with purified recombinant iPLA2γ, germ-line iPLA2γ-/- mice, cardiac myocyte-specific iPLA2γ transgenic mice, and wild-type mice. Using charge-switch high mass accuracy LC-MS/MS with selected reaction monitoring and product ion accurate masses, we demonstrated that iPLA2γ is the major enzyme responsible for the release of oxidized aliphatic chains from CL. Our results also indicated that iPLA2γ selectively hydrolyzes 9-hydroxy-octadecenoic acid in comparison to 13-hydroxy-octadecenoic acid from oxidized CLs. Moreover, oxidative stress (ADP, NADPH, and Fe3+) resulted in the robust production of oxidized CLs in intact mitochondria from iPLA2γ-/- mice. In sharp contrast, oxidized CLs were readily hydrolyzed in mitochondria from wild-type mice during oxidative stress. Finally, we demonstrated that CL activates the iPLA2γ-mediated hydrolysis of arachidonic acid from phosphatidylcholine, thereby integrating the production of lipid messengers from different lipid classes in mitochondria. Collectively, these results demonstrate the integrated roles of CL and iPLA2γ in lipid second-messenger production and mitochondrial bioenergetics during oxidative stress.


Assuntos
Cardiolipinas/metabolismo , Metabolismo Energético , Fosfolipases A2 do Grupo VI/metabolismo , Mitocôndrias Cardíacas/enzimologia , Estresse Oxidativo , Transdução de Sinais , Animais , Cardiolipinas/genética , Fosfolipases A2 do Grupo VI/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Oxirredução
7.
J Biol Chem ; 291(37): 19687-700, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27453526

RESUMO

Calcium-independent phospholipase A2γ (iPLA2γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA2γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA2γ knock-out (CMiPLA2γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA2γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA2γKO mice demonstrated attenuated Ca(2+)-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA2γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA2γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca(2+) by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA2γ, these results are consistent with salvage of myocardium after I/R by iPLA2γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Fosfolipases A2 do Grupo VI/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Animais , Cálcio/metabolismo , Fosfolipases A2 do Grupo VI/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Traumatismo por Reperfusão Miocárdica/genética , Especificidade de Órgãos , Oxirredução
8.
Anal Biochem ; 442(1): 40-50, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23850559

RESUMO

A highly sensitive, specific, and robust method for the analysis of oxidized metabolites of linoleic acid (LA), arachidonic acid (AA), and docosahexaenoic acid (DHA) was developed using charge-switch derivatization, liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) with selected reaction monitoring (SRM) and quantitation by high mass accuracy analysis of product ions, thereby minimizing interferences from contaminating ions. Charge-switch derivatization of LA, AA, and DHA metabolites with N-(4-aminomethylphenyl)-pyridinium resulted in a 10- to 30-fold increase in ionization efficiency. Improved quantitation was accompanied by decreased false positive interferences through accurate mass measurements of diagnostic product ions during SRM transitions by ratiometric comparisons with stable isotope internal standards. The limits of quantitation were between 0.05 and 6.0pg, with a dynamic range of 3 to 4 orders of magnitude (correlation coefficient r(2)>0.99). This approach was used to quantitate the levels of representative fatty acid metabolites from wild-type (WT) and iPLA2γ(-/-) mouse liver identifying the role of iPLA2γ in hepatic lipid second messenger production. Collectively, these results demonstrate the utility of high mass accuracy product ion analysis in conjunction with charge-switch derivatization for the highly specific quantitation of diminutive amounts of LA, AA, and DHA metabolites in biologic systems.


Assuntos
Ácido Araquidônico/análise , Ácido Araquidônico/química , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/química , Ácido Linoleico/análise , Ácido Linoleico/química , Animais , Ácido Araquidônico/metabolismo , Cromatografia Líquida , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Linoleico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
9.
J Lipid Res ; 54(5): 1312-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23410936

RESUMO

Barth syndrome is a complex metabolic disorder caused by mutations in the mitochondrial transacylase tafazzin. Recently, an inducible tafazzin shRNA knockdown mouse model was generated to deconvolute the complex bioenergetic phenotype of this disease. To investigate the underlying cause of hemodynamic dysfunction in Barth syndrome, we interrogated the cardiac structural and signaling lipidome of this mouse model as well as its myocardial bioenergetic phenotype. A decrease in the distribution of cardiolipin molecular species and robust increases in monolysocardiolipin and dilysocardiolipin were demonstrated. Additionally, the contents of choline and ethanolamine glycerophospholipid molecular species containing precursors for lipid signaling at the sn-2 position were altered. Lipidomic analyses revealed specific dysregulation of HETEs and prostanoids, as well as oxidized linoleic and docosahexaenoic metabolites. Bioenergetic interrogation uncovered differential substrate utilization as well as decreases in Complex III and V activities. Transgenic expression of cardiolipin synthase or iPLA2γ ablation in tafazzin-deficient mice did not rescue the observed phenotype. These results underscore the complex nature of alterations in cardiolipin metabolism mediated by tafazzin loss of function. Collectively, we identified specific lipidomic, bioenergetic, and signaling alterations in a murine model that parallel those of Barth syndrome thereby providing novel insights into the pathophysiology of this debilitating disease.


Assuntos
Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Metabolismo dos Lipídeos , Lipídeos/biossíntese , Mitocôndrias Cardíacas/metabolismo , Animais , Animais Geneticamente Modificados , Síndrome de Barth/patologia , Cardiolipinas/genética , Modelos Animais de Doenças , Metabolismo Energético , Regulação da Expressão Gênica , Humanos , Lipídeos/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias Cardíacas/patologia , Membranas Mitocondriais/metabolismo , Transdução de Sinais , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
10.
J Biol Chem ; 287(30): 25086-97, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22584571

RESUMO

Lipidomic regulation of mitochondrial cardiolipin content and molecular species composition is a prominent regulator of bioenergetic efficiency. However, the mechanisms controlling cardiolipin metabolism during health or disease progression have remained elusive. Herein, we demonstrate that cardiac myocyte-specific transgenic expression of cardiolipin synthase results in accelerated cardiolipin lipidomic flux that impacts multiple aspects of mitochondrial bioenergetics and signaling. During the postnatal period, cardiolipin synthase transgene expression results in marked changes in the temporal maturation of cardiolipin molecular species during development. In adult myocardium, cardiolipin synthase transgene expression leads to a marked increase in symmetric tetra-18:2 molecular species without a change in total cardiolipin content. Mechanistic analysis demonstrated that these alterations result from increased cardiolipin remodeling by sequential phospholipase and transacylase/acyltransferase activities in conjunction with a decrease in phosphatidylglycerol content. Moreover, cardiolipin synthase transgene expression results in alterations in signaling metabolites, including a marked increase in the cardioprotective eicosanoid 14,15-epoxyeicosatrienoic acid. Examination of mitochondrial bioenergetic function by high resolution respirometry demonstrated that cardiolipin synthase transgene expression resulted in improved mitochondrial bioenergetic efficiency as evidenced by enhanced electron transport chain coupling using multiple substrates as well as by salutary changes in Complex III and IV activities. Furthermore, transgenic expression of cardiolipin synthase attenuated maladaptive cardiolipin remodeling and bioenergetic inefficiency in myocardium rendered diabetic by streptozotocin treatment. Collectively, these results demonstrate the unanticipated role of cardiolipin synthase in maintaining physiologic membrane structure and function even under metabolic stress, thereby identifying cardiolipin synthase as a novel therapeutic target to attenuate mitochondrial dysfunction in diabetic myocardium.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Metabolismo Energético , Proteínas de Membrana/metabolismo , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Fosfatidilgliceróis/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Fosfatidilgliceróis/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética
11.
J Biol Chem ; 287(18): 14880-95, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22389508

RESUMO

Calcium-independent phospholipase A(2)γ (iPLA(2)γ) (PNPLA8) is the predominant phospholipase activity in mammalian mitochondria. However, the chemical mechanisms that regulate its activity are unknown. Here, we utilize iPLA(2)γ gain of function and loss of function genetic models to demonstrate the robust activation of iPLA(2)γ in murine myocardial mitochondria by Ca(2+) or Mg(2+) ions. Calcium ion stimulated the production of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) from 1-palmitoyl-2-[(14)C]arachidonoyl-sn-glycero-3-phosphocholine during incubations with wild-type heart mitochondrial homogenates. Furthermore, incubation of mitochondrial homogenates from transgenic myocardium expressing iPLA(2)γ resulted in 13- and 25-fold increases in the initial rate of radiolabeled 2-AA-LPC and arachidonic acid (AA) production, respectively, in the presence of calcium ion. Mass spectrometric analysis of the products of calcium-activated hydrolysis of endogenous mitochondrial phospholipids in transgenic iPLA(2)γ mitochondria revealed the robust production of AA, 2-AA-LPC, and 2-docosahexaenoyl-LPC that was over 10-fold greater than wild-type mitochondria. The mechanism-based inhibitor (R)-(E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL) (iPLA(2)γ selective), but not its enantiomer, (S)-BEL (iPLA(2)ß selective) or pyrrolidine (cytosolic PLA(2)α selective), markedly attenuated Ca(2+)-dependent fatty acid release and polyunsaturated LPC production. Moreover, Ca(2+)-induced iPLA(2)γ activation was accompanied by the production of downstream eicosanoid metabolites that were nearly completely ablated by (R)-BEL or by genetic ablation of iPLA(2)γ. Intriguingly, Ca(2+)-induced iPLA(2)γ activation was completely inhibited by long-chain acyl-CoA (IC(50) ∼20 µm) as well as by a nonhydrolyzable acyl-CoA thioether analog. Collectively, these results demonstrate that mitochondrial iPLA(2)γ is activated by divalent cations and inhibited by acyl-CoA modulating the generation of biologically active metabolites that regulate mitochondrial bioenergetic and signaling functions.


Assuntos
Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Fosfolipases A2 do Grupo VI/metabolismo , Magnésio/metabolismo , Mitocôndrias Cardíacas/enzimologia , Animais , Ácido Araquidônico/genética , Cátions Bivalentes/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fosfolipases A2 do Grupo VI/antagonistas & inibidores , Fosfolipases A2 do Grupo VI/genética , Lisofosfatidilcolinas/genética , Lisofosfatidilcolinas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Modelos Genéticos , Naftalenos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Pironas/farmacologia
12.
J Biol Chem ; 285(47): 36495-510, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20817734

RESUMO

Phospholipases are critical enzyme mediators participating in many aspects of cellular function through modulating the generation of lipid 2nd messengers, membrane physical properties, and cellular bioenergetics. Here, we demonstrate that mice null for calcium-independent phospholipase A(2)γ (iPLA(2)γ(-/-)) are completely resistant to high fat diet-induced weight gain, adipocyte hypertrophy, hyperinsulinemia, and insulin resistance, which occur in iPLA(2)γ(+/+) mice after high fat feeding. Notably, iPLA(2)γ(-/-) mice were lean, demonstrated abdominal lipodystrophy, and remained insulin-sensitive despite having a marked impairment in glucose-stimulated insulin secretion after high fat feeding. Respirometry of adipocyte explants from iPLA(2)γ(-/-) mice identified increased rates of oxidation of multiple different substrates in comparison with adipocyte explants from wild-type littermates. Shotgun lipidomics of adipose tissue from wild-type mice demonstrated the anticipated 2-fold increase in triglyceride content after high fat feeding. In sharp contrast, the adipocyte triglyceride content was identical in iPLA(2)γ(-/-) mice fed either a standard diet or a high fat diet. Respirometry of skeletal muscle mitochondria from iPLA(2)γ(-/-) mice demonstrated marked decreases in state 3 respiration using multiple substrates whose metabolism was uncoupled from ATP production. Shotgun lipidomics of skeletal muscle revealed a decreased content of cardiolipin with an altered molecular species composition thereby identifying the mechanism underlying mitochondrial uncoupling in the iPLA(2)γ(-/-) mouse. Collectively, these results identify iPLA(2)γ as an obligatory upstream enzyme that is necessary for efficient electron transport chain coupling and energy production through its participation in the alterations of cellular bioenergetics that promote the development of the metabolic syndrome.


Assuntos
Adipócitos/metabolismo , Cálcio/metabolismo , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/química , Fosfolipases A2 do Grupo IV/fisiologia , Resistência à Insulina , Mitocôndrias Musculares/fisiologia , Obesidade/prevenção & controle , Animais , Western Blotting , Composição Corporal , Metabolismo Energético , Ácidos Graxos/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Oxirredução , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triglicerídeos/metabolismo
13.
J Biol Chem ; 284(51): 35632-44, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19840936

RESUMO

Genetic ablation of calcium-independent phospholipase A(2)gamma (iPLA(2)gamma) results in profound alterations in hippocampal phospholipid metabolism and mitochondrial phospholipid homeostasis resulting in enlarged and degenerating mitochondria leading to autophagy and cognitive dysfunction. Shotgun lipidomics demonstrated multiple alterations in hippocampal lipid metabolism in iPLA(2)gamma(-/-) mice including: 1) a markedly elevated hippocampal cardiolipin content with an altered molecular species composition characterized by a shift to shorter chain length molecular species; 2) alterations in both choline and ethanolamine glycerophospholipids, including a decreased plasmenylethanolamine content; 3) increased oxidized phosphatidylethanolamine molecular species; and 4) an increased content of ceramides. Electron microscopic examination demonstrated the presence of enlarged heteromorphic lamellar structures undergoing degeneration accompanied by the presence of ubiquitin positive spheroid inclusion bodies. Purification of these enlarged heteromorphic lamellar structures by buoyant density centrifugation and subsequent SDS-PAGE and proteomics identified them as degenerating mitochondria. Collectively, these results identify the obligatory role of iPLA(2)gamma in neuronal mitochondrial lipid metabolism and membrane structure demonstrating that iPLA(2)gamma loss of function results in a mitochondrial neurodegenerative disorder characterized by degenerating mitochondria, autophagy, and cognitive dysfunction.


Assuntos
Autofagia , Cardiolipinas/metabolismo , Transtornos Cognitivos/enzimologia , Hipocampo/enzimologia , Metabolismo dos Lipídeos , Mitocôndrias/enzimologia , Fosfolipases A2 Independentes de Cálcio/metabolismo , Animais , Cardiolipinas/genética , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Hipocampo/ultraestrutura , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/ultraestrutura , Fosfolipases A2 Independentes de Cálcio/genética
14.
Anal Chem ; 80(19): 7576-85, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18767869

RESUMO

A matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) based approach was developed for the rapid analyses of cellular glycerophospholipids. Through multiplexed solvent-enabled optimization of analyte-matrix interactions during the crystallization process, over a 30-fold increase in S/N was achieved using 9-aminoacridine as the matrix. The linearity of response (r(2) = 0.99) and dynamic range of this method (over 2 orders of magnitude) were excellent. Moreover, through multiplexing ionization conditions by generating suites of different analyte-matrix interactions in the absence or presence of different alkali metal cations in the matrix, discrete lipid classes were highly and selectively ionized under different conditions resulting in the de facto resolution of lipid classes without chromatography. The resultant decreases in spectral complexity facilitated tandem mass spectrometric analysis through high energy fragmentation of lithiated molecular ions that typically resulted in informative fragment ions. Anionic phospholipids were also detected as singly negatively charged species that could be fragmented using MALDI tandem mass spectrometry leading to structural assignments. Collectively, these results identify a rapid, sensitive, and highly informative MALDI-TOF MS approach for analysis of cellular glycerophospholipids directly from extracts of mammalian tissues without the need for prior chromatographic separation.


Assuntos
Glicerofosfolipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aminacrina/química , Animais , Cardiolipinas/análise , Cristalização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/química , Fosfatidilcolinas/análise , Solventes/química , Extratos de Tecidos/química , Triglicerídeos/análise
15.
Biochemistry ; 47(21): 5869-80, 2008 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-18454555

RESUMO

Large-scale neuronal remodeling through apoptosis occurs shortly after birth in all known mammalian species. Apoptosis, in large part, depends upon critical interactions between mitochondrial membranes and cytochrome c. Herein, we examined the hypothesis that the large-scale reorganization of neuronal circuitry after birth is accompanied by profound alterations in cardiolipin (CL) content and molecular species distribution. During embryonic development, over 100 CL molecular species were identified and quantitated in murine neuronal tissues. The embryonic CL profile was notable for the presence of abundant amounts of relatively short aliphatic chains (e.g., palmitoleic and oleic acids). In sharp contrast, after birth, the CL profile contained a remarkably complex repertoire of CL molecular species, in which the signaling fatty acids (i.e., arachidonic and docosahexaenoic acids) were markedly increased. These results identify the rapid remodeling of CL in the perinatal period with resultant alterations in the physical properties of the mitochondrial membrane. The complex distribution of aliphatic chains in the neuronal CL pool is separate and distinct from that in other organs (e.g., heart, liver, etc.), where CL molecular species contain predominantly only one major type of aliphatic chain (e.g., linoleic acid). Analyses of mRNA levels by real-time quantitative polymerase chain reactions suggested that the alterations in CL content were due to the combined effects of both attenuation of de novo CL biosynthesis and decreased remodeling of CL. Collectively, these results provide a new perspective on the complexity of CL in neuronal signaling, mitochondrial bioenergetics, and apoptosis.


Assuntos
Cardiolipinas/química , Animais , Apoptose , Encéfalo/embriologia , Encéfalo/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Modelos Biológicos , Miocárdio/metabolismo , Neurônios/metabolismo , Coelhos , Ratos , Transdução de Sinais , Fatores de Tempo
16.
Anal Chem ; 79(17): 6629-40, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17665876

RESUMO

A shotgun metabolomics approach using MALDI-TOF/TOF mass spectrometry was developed for the rapid analysis of negatively charged water-soluble cellular metabolites. Through the use of neutral organic solvents to inactivate endogenous enzyme activities (i.e., methanol/chloroform/H2O extraction), in conjunction with a matrix having minimal background noise (9-amnioacridine), a set of multiplexed conditions was developed that allowed identification of 285 peaks corresponding to negatively charged metabolites from mouse heart extracts. Identification of metabolite peaks was based on mass accuracy and was confirmed by tandem mass spectrometry for 90 of the identified metabolite peaks. Through multiplexing ionization conditions, new suites of metabolites could be ionized and "spectrometric isolation" of closely neighboring peaks for subsequent tandem mass spectrometric interrogation could be achieved. Moreover, assignments of ions from isomeric metabolites and quantitation of their relative abundance was achieved in many cases through tandem mass spectrometry by identification of diagnostic fragmentation ions (e.g., discrimination of ATP from dGTP). The high sensitivity of this approach facilitated the detection of extremely low abundance metabolites including important signaling metabolites such as IP3, cAMP, and cGMP. Collectively, these results identify a multiplexed MALDI-TOF/TOF MS approach for analysis of negatively charged metabolites in mammalian tissues.


Assuntos
Miócitos Cardíacos/metabolismo , Proteômica/métodos , Extratos de Tecidos/análise , Extratos de Tecidos/metabolismo , Água/química , Animais , AMP Cíclico/química , AMP Cíclico/metabolismo , Concentração de Íons de Hidrogênio , Íons/química , Isomerismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Extratos de Tecidos/química
17.
J Neurochem ; 97(5): 1288-300, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16539649

RESUMO

Herein, we report the first study on the mass distribution and molecular species composition of abundant triacylglycerols (TAG) in ganglia. This study demonstrates five novel findings. First, unanticipated high levels of TAG were present in all examined ganglia from multiple species (e.g. mouse, rat and rabbit). Second, ganglial TAG mass content is location-dependent. Third, the TAG mass levels in ganglia are species-specific. Fourth, dorsal root ganglial TAG mass levels in streptozotocin-induced diabetic mice are dramatically depleted relative to those found in untreated control mice. Fifth, mouse ganglial TAG mass levels decrease with age although molecular species composition is not changed. Collectively, these results indicate that TAG is an important component of ganglia and may potentially contribute to pathological alterations in peripheral neuronal function in diabetic neuropathy.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Gânglios Espinais/metabolismo , Gânglios Simpáticos/metabolismo , Triglicerídeos/deficiência , Fatores Etários , Envelhecimento/metabolismo , Animais , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Feminino , Gânglios Espinais/fisiopatologia , Gânglios Simpáticos/fisiopatologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurônios Aferentes/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Triglicerídeos/análise , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...